Gradient Boost

Before moving forward with the to-do list, let’s throw a Random Forest to it.

Gradient boost

For many reasons, Random Forest is usually a very good baseline model. In this particular case I started with the polynomial OLS as baseline model, just because it was so evident from the correlations that the relationship between temperature and consumption follows a polynomial shape. But let’s go back to a beloved RF.

Model Cards provide a framework for transparent, responsible reporting. 
 Use the vetiver `.qmd` Quarto template as a place to start, 
 with vetiver.model_card()
Writing pin:
Name: 'wd-gb'
Version: 20251124T032542Z-343ba
⏩ stepit 'gb_raw': Starting execution of `strom.modelling.assess_model()` 2025-11-24 03:25:42

⏩ stepit 'get_single_split_metrics': Starting execution of `strom.modelling.get_single_split_metrics()` 2025-11-24 03:25:42

✅ stepit 'get_single_split_metrics': Successfully completed and cached [exec time 0.0 seconds, cache time 0.0 seconds, size 1.0 KB] `strom.modelling.get_single_split_metrics()` 2025-11-24 03:25:42

♻️  stepit 'cross_validate_pipe': is up-to-date. Using cached result for `strom.modelling.cross_validate_pipe()` 2025-11-24 03:25:42

✅ stepit 'gb_raw': Successfully completed and cached [exec time 0.2 seconds, cache time 0.0 seconds, size 142.6 KB] `strom.modelling.assess_model()` 2025-11-24 03:25:42

Metrics

Single Split CV
train test test train
MAE - Mean Absolute Error 1.364678 2.563777 1.310741 1.412537
MSE - Mean Squared Error 3.592260 23.954699 3.232546 3.839411
RMSE - Root Mean Squared Error 1.895326 4.894354 1.660649 1.959309
R2 - Coefficient of Determination 0.961459 0.746361 0.477251 0.961105
MAPE - Mean Absolute Percentage Error 0.143197 0.228165 0.184038 0.130849
EVS - Explained Variance Score 0.961459 0.754822 0.495584 0.961105
MeAE - Median Absolute Error 0.968555 1.386748 1.100589 1.007152
D2 - D2 Absolute Error Score 0.802989 0.639577 0.267363 0.800863
Pinball - Mean Pinball Loss 0.682339 1.281889 0.655371 0.706268

Scatter plot matrix

Observed vs. Predicted and Residuals vs. Predicted

Check for …

check the residuals to assess the goodness of fit.

  • white noise or is there a pattern?
  • heteroscedasticity?
  • non-linearity?

Normality of Residuals:

Check for …

  • Are residuals normally distributed?

Leverage

Scale-Location plot

Residuals Autocorrelation Plot

Residuals vs Time

Again, overfits a lot.

Parameter: param_model__learning_rate

Parameter: param_model__max_depth

Parameter: param_model__min_samples_leaf

Parameter: param_model__min_samples_split

Parameter: param_model__n_estimators

Parameter: param_model__subsample

Parameter: param_vars__columns

Best model

{'model__learning_rate': 0.1,
 'model__max_depth': 5,
 'model__min_samples_leaf': 5,
 'model__min_samples_split': 48,
 'model__n_estimators': 60,
 'model__subsample': 1,
 'vars__columns': ['tt_tu_mean', 'td_mean']}
⏩ stepit 'gb_tuned': Starting execution of `strom.modelling.assess_model()` 2025-11-24 03:25:50

⏩ stepit 'get_single_split_metrics': Starting execution of `strom.modelling.get_single_split_metrics()` 2025-11-24 03:25:50

✅ stepit 'get_single_split_metrics': Successfully completed and cached [exec time 0.0 seconds, cache time 0.0 seconds, size 1.0 KB] `strom.modelling.get_single_split_metrics()` 2025-11-24 03:25:50

♻️  stepit 'cross_validate_pipe': is up-to-date. Using cached result for `strom.modelling.cross_validate_pipe()` 2025-11-24 03:25:50

✅ stepit 'gb_tuned': Successfully completed and cached [exec time 0.1 seconds, cache time 0.0 seconds, size 150.2 KB] `strom.modelling.assess_model()` 2025-11-24 03:25:50

Metrics

Single Split CV
train test test train
MAE - Mean Absolute Error 1.481329 2.548565 1.255343 1.607755
MSE - Mean Squared Error 5.438492 24.000544 2.884752 6.369723
RMSE - Root Mean Squared Error 2.332058 4.899035 1.572622 2.522672
R2 - Coefficient of Determination 0.941651 0.745876 0.540709 0.935623
MAPE - Mean Absolute Percentage Error 0.144094 0.232144 0.179743 0.138839
EVS - Explained Variance Score 0.941651 0.755293 0.570550 0.935623
MeAE - Median Absolute Error 0.962382 1.360189 1.069666 1.074011
D2 - D2 Absolute Error Score 0.786149 0.641716 0.306742 0.773475
Pinball - Mean Pinball Loss 0.740665 1.274283 0.627672 0.803877

Scatter plot matrix

Observed vs. Predicted and Residuals vs. Predicted

Check for …

check the residuals to assess the goodness of fit.

  • white noise or is there a pattern?
  • heteroscedasticity?
  • non-linearity?

Normality of Residuals:

Check for …

  • Are residuals normally distributed?

Leverage

Scale-Location plot

Residuals Autocorrelation Plot

Residuals vs Time

Compare vanilla vs. tuned

Cross-validation messages

♻️  stepit 'cross_validate_pipe': is up-to-date. Using cached result for `strom.modelling.cross_validate_pipe()` 2025-11-24 03:25:54

♻️  stepit 'cross_validate_pipe': is up-to-date. Using cached result for `strom.modelling.cross_validate_pipe()` 2025-11-24 03:25:54

Metrics

Single split

Metrics based on the test set of the single split

Cross validation

Predictions, residuals, observed

next

Time vs. Predicted and Observed

Time vs. Residuals

Model details

Pipeline(steps=[('vars',
                 ColumnSelector(columns=['tt_tu_mean', 'rf_tu_mean', 'td_mean',
                                         'vp_std_mean', 'tf_std_mean'])),
                ('model', GradientBoostingRegressor(random_state=7))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('vars', ColumnSelector(columns=['tt_tu_mean', 'td_mean'])),
                ('model',
                 GradientBoostingRegressor(max_depth=5, min_samples_leaf=5,
                                           min_samples_split=48,
                                           n_estimators=60, random_state=7,
                                           subsample=1))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

TODOs